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ABSTRACT 

` The research presented and discussed in this dissertation involves the synthesis of 

aromatic dicarboxylates via catalytic isomerization or disproportionation, the synthesis of 

amines via catalytic hydrosilylation of amides and the development of new methods and 

approaches for studying catalytic reactions on an automated synthesis platform. The 

automated synthesis platform was utilized for studying kinetics of oxidation reactions of 

cyclohexane, as well as the synthesis of small molecules in specialized reactors and 

scalable quantities of heterogeneous catalysts. 

Aromatic dicarboxylic acids such as terephthalic acid or 2,5-furandicarboxylic 

acid can be prepared through catalytic disproportionation or isomerization of their 

respective metal carboxylate precursors. Copper(I) iodide catalyzes the 

disproportionation of potassium furoate to 2,5-furandicarboxylate in up to 85% yield at 

temperatures of 280 – 300 °C under a carbon dioxide rich atmosphere (40 bar). CuI also 

catalyzes the disproportionation of potassium benzoate to terephthalate in up to 60% 

yield at temperatures of 320 – 350 °C under carbon dioxide (40 bar). 

XantphosRh(cod)BArF (cod = 1,5-cyclooctadiene; BArF = Tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate) was demonstrated to be an excellent catalyst for the 

reduction of secondary and tertiary amides to secondary and tertiary amines by 

phenylsilane. Most substrates could be converted at mild temperatures (25 – 60 °C) 

within 1 h. Tertiary amides required 2 equiv. of PhSiH3 for full conversion. Secondary 

amides exhibited side reactions involving disproportionation of N-R and N-H bonds. 

These side reactions were inhibited by the addition of 10 equiv. of PhSiH3. 
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An automated synthesis robot (Chemspeed SWING-XL) was used to prepare 

surface supported catalysts of Pd on CeO2, SiO2, TiO2 for hydrogenation reactions. These 

materials were prepared by iterative additions of a dilute pre-catalyst solution followed 

by slow evaporation of solvent. These materials were used as catalysts for hydrogenolysis 

experiments, affording cyclohexanol from guaiacol. This instrument was also used to 

study the kinetics of cyclohexane oxidation reactions catalyzed by a series 

[tris(oxazolinyl)borato]cobalt compounds previously reported in our group. Finally, this 

same instrument was used to prepare synthetically challenging diene compounds, by 

slowly adding catalyst to a heated, pressurized reactor using high-pressure peristaltic 

pumps. 
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CHAPTER 1. INTRODUCTION 

General Introduction 

As the global population continues to increase, there is a constantly growing 

demand for energy, medicine and new materials. To account for growing demand and 

depleting supplies, development of less energy intensive reactions using sustainable 

practices, and development of new methods for producing energy from renewable 

sources is paramount.1 In fact, many of these needs are currently being sought in part 

through the synthesis of bio-ethanol from biomass,2 bio-diesel from algae,3 organic 

photovoltaics,4 and the use of more abundant metals for catalysis over more precious rare 

earth metal catalysts.5 To achieve these grand, over-arching goals we seek strategies to 

make iterative changes to improve specific reactions and develop methods to facilitate 

new, unique or challenging chemistry. 

Aromatic dicarboxylates or dicarboxylic acids are commonly used as substrates 

for polymerization reactions in the production of polyesters. Global demand for 

polyesters is constantly increasing in the form of fabric, films and packaging materials. 

Often, these dicarboxylic acid materials such as terephthalic acid (TPA) is prepared 

through harsh oxidative processes (Amoco Process).6,7 Other dicarboxylic acids such as 

2,5-furandicarboxylic acid (2,5-FDCA) are prepared using similar processes.8–10 The 

classical method of accessing these materials from a non-oxidative pathway utilizes 

cadmium salts to catalyze the disproportionation of potassium carboxylates and 

isomerization of dipotassium dicarboxylates into isomeric dicarboxylates (Henkel 

Process).11–19 Similar experiments have been performed on heteroaromatic carboxylates 

to make the dicarboxylate compound 2,5-FDCA (Eq. 1).20–22 Innovative catalytic 
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reactions are required to improve selectivity, yield and avoid cadmium catalysts in favor 

of more environmentally friendly catalysts. Copper (CuCl2) has been investigated as a 

catalyst but was not effective at synthesizing 2,5-FDCA in reasonable yield.21 Herein we 

demonstrate that Cu(I) iodide can be significantly more efficient than even Cd or Zn 

compounds as catalysts for the synthesis of 2,5-FDCA under high pressures of carbon 

dioxide at elevated temperatures. 

 

Technological improvements in the field of automation allow for rapid progress in 

advancing the discovery and optimization of chemical reactions. Strategies such as 

Design of Experiment (DOE) combined with automation allows for rapid investigation of 

a broad chemical landscape.23–29 Studying chemical kinetics allows for a more thorough 

understand of a reaction mechanism. We began to use our synthesis robot to study the 

kinetics of transition metal catalyzed oxidation reactions of cyclohexane. Selective 

oxidation of cyclohexane can be challenging,30 but cyclohexanol and cyclohexanone are 

important precursors for the synthesis of nylon (Scheme 1).31 
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Scheme 1. Conversion of Cyclohexane to Adipic Acid or Caprolactam 

 

Heterogeneous catalysts are used extensively across a broad range of chemical 

transformations. One strategy for accessing a new source of renewable energy would 

involve biomass upgrading. Reports of utilizing heterogeneous catalysts to access these 

kinds of transformations are ubiquitous.32–35 Synthesis of heterogeneous catalysis 

typically involves tedious mixing and grinding of pre-catalyst solutions with the solid 

support material. Making large libraries of materials can be time consuming and difficult 

to reproduce accurately. We proposed a method for making a library of materials 

automatically using a modified variant of “wet impregnation” involving iterative 

additions of a dilute solution. Iterative addition strategies already exist but involve 

sputtering of very thin layers of catalyst.36 This method is excellent for preparing a 

library for primary screening but does not allow for scaling catalyst preparation. These 

catalysts can be prepared on gram scales and tested in catalytic reactions to assess their 

potential in a series of hydrogenolysis reactions on lignin model compounds. 

Functionalized polymers, macromolecules which are chemically bound to an 

external functional group, are utilized for making polymers with improved activity or 

cross-linked polymers, among other uses. Enyne metathesis (Eq. 2) is a potential route for 
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the synthesis of butadiene derivatives37–39 which could be incorporated into polymers, to 

achieve functionalization without the need to rely on end chain functionalization. These 

reactions are difficult to optimize in traditional Schlenk-type flasks. Some of the keys to 

extending the activity of the catalyst include slow catalyst addition and high pressures of 

ethylene. Using high end instrumentation such as a synthesis robot allows for special 

consideration of reaction pressure and catalyst addition. Stainless-steel reactors allow for 

higher pressures of ethylene than pressures traditionally accessed by glass vessels. High-

pressure pumps allow the catalyst solution to be added slowly while the reaction is 

already in progress extending the catalyst lifetime and turnovers. 

 

A common method of accessing amines in the total synthesis of complex 

molecules is through the reduction of amides.40–42 The conventional method for reducing 

amides involves reactions with harsh reductants such as lithium aluminum hydride.43 

These reductants can be difficult to work with, being sensitive to air and water, and react 

to give large amounts of salt waste byproducts.44–46 Establishment of late metal catalysts 

for these reductions are becoming more prevalent. Often these catalysts are only able to 

reduce either secondary or tertiary amides. We present a cationic Rh-based catalyst which 

can synthesize a series of both secondary and tertiary amines from their respective 

amides. 
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Thesis Organization 

 This thesis contains four chapters. Chapter 1 provides a general introduction to 

dicarboxylate isomerization reactions, amide reductions and high-throughput 

experimentation. Chapter 2, 3 and 4 consists of work that is not yet published, and thus 

are manuscripts in preparation for publication. 

 Chapter 2 describes the disproportionation of aromatic carboxylates such as 

benzoate and furoate to dicarboxylates catalyzed by copper(I) iodide. 

 Chapter 3 describes our groups approaches towards unique experiments applied 

on our automated synthesis platform. The first in which we monitor the kinetics of 

catalytic oxidation reactions, the second in which we prepare and test heterogeneous 

catalysts, and finally experiments to help optimize enyne metathesis experiments. 

 Chapter 4 describes the catalytic reduction of tertiary and secondary amines using 

hydrosilanes catalyzed by a cationic rhodium complex and the study of that complex with 

hydrosilanes. 

 Chapter 5 presents general conclusions. 
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CHAPTER 2. SYNTHESIZING AROMATIC DICARBOXYLIC ACIDS VIA 

CATALYTIC DISPROPORTIONATION WITH COPPER(I) IODIDE 

Modified from a paper to be submitted to a journal 

Zachary B. Weinstein, Aaron D. Sadow* 

Abstract 

Copper(I) iodide catalyzes the disproportionation of aromatic and heteroaromatic 

carboxylic acids to give dicarboxylic acids. Potassium furoate heated to 280 – 300 °C in 

the presence of 10 mol% CuI under carbon dioxide (40 bar) forms 2,5-furandicarboxylate 

in up to 75% yield with excellent selectivity over 2,4-furandicarboxylate (92% 

selectivity). Potassium benzoate heated to 320 – 350 °C the presence of 10 mol% CuI 

under carbon dioxide (40 bar) produces terephthalic acid in up to 60% yield.  

 

Introduction  

Sustainable manufacturing of aromatic dicarboxylic acids, such as terephthalic 

acid (TPA) or 2,5-furandicarboxylic acid (2,5-FDCA) used in polyesters, would benefit 

from non-oxidative syntheses because their bio-renewable precursors are already partially 

oxidized. These dicarboxylic acid products are intermediates in large scale, or potentially 

large scale, polymer synthesis. Terephthalic acid (30 million tons per year as of 2006) is 

primarily used to manufacture poly(ethylene) terephthalate (PET) for applications in 

textiles and food and beverage containers. Poly(ethylene) furoate (PEF) is an emerging 

alternative material to PET, with 2,5-FDCA instead of TPA as the dicarboxylate 
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monomer, because the polyester has the benefit of being less oxygen permeable than 

PET. Dicarboxylic acids are currently synthesized via harsh oxidation processes from 

reduced petrochemicals. For example, the multistep Amoco process utilizes p-xylene as a 

precursor to terephthalic acid.1,2 A related oxidation of bio-renewable 5-hydroxymethyl 

furfural (HMF) is proposed for the synthesis of 2,5-FDCA and further enhances the 

appeal of PEF in the context of sustainability,3  but the short shelf life of HMF may 

generate challenges for this conversion approach.  

Disproportionation of aromatic monocarboxylates or isomerization of aromatic 

dicarboxylates could provide an alternative route for the synthesis of isomeric 

dicarboxylic acids. In fact, the isomerization of isophthalate to terephthalate, known as 

the Henkel process, was a commercial process prior to the development of the oxidative 

Amoco process.4 The challenges facing the Henkel process include high reaction 

temperatures, highly toxic cadmium-based catalysts, and variable dependence on carbon 

dioxide pressure.5–7  

The state-of-the-art conditions for disproportionation of potassium benzoate (as 

described in patent literature)8 involve heating solid mixtures of cadmium(II) iodide and 

potassium benzoate at 350-450 °C under 10-50 bar of CO2. The isomerization of 

potassium isophthalate also involves heating mixtures of cadmium(II) iodide and 

dipotassium isophthalate. Generally, the isomerization reaction occurs at milder 

temperatures and requires shorter times than disproportionation reaction.9 The importance 

of carbon dioxide in both the disproportionation and isomerization reactions that produce 

terephthalate appears to be sensitive to the other reaction conditions, and reported carbon 

dioxide pressures vary widely. Initial reports indicate that the higher pressures of CO2 are 
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necessary for conversion,10,11 but later studies use atmospheric pressures12 or even 

flowing N2.
13 

Harsh oxidation reactions similar to the Amoco process are used to synthesize 

2,5-FDCA from HMF14,15,16 and suffer from the same drawbacks as p-xylene oxidation. 

As an alternative to oxidations, Henkel-type disproportionation reactions of furan 2-

carboxylate salts may provide 2,5-FDCA. Cadmium iodide catalyzes the redistribution at 

elevated temperatures (380 °C) under a carbon dioxide atmosphere, similarly to the 

disproportionation of potassium benzoate. The formation of both 2,5-FDCA and its 

isomer, 2,4-FDCA (40-59% yield) after 20 min complicate these conversions.7,9 Lower 

temperature (260 °C) and longer reaction time (5.5 h) affords 2,5-FDCA in improved 

yield (62%) and selectivity (70%) over 2,4-FDCA. In this case, the reaction was 

performed under flowing N2.
13  

2,5-FDCA is generally reported to be synthesized at lower temperatures than 

TPA. A careful study of the effect of temperature on potassium furoate conversion, total 

FDCA yield, and selectivity for 2,5-FDCA in a ZnCl2-catalyzed process reveals 

expectedly that at high conversion with high reaction temperature, product yield 

decreases from diminished selectivity. Specifically, the yield of 2,5-FDCA increases 

from 8% in reactions at 220 °C to 52% at 250 °C, but at even higher temperatures and 
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Scheme 2. Dicarboxylates are often prepared through oxidation. Disproportionation 

reactions provide an alternative route towards synthesizing diacids. (a) Synthesis of 

terephthalic acid (b) Synthesis of 2,5-furandicarboxylic acid 
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higher conversions, yield decreases (e.g., 13% at 280 °C) as a result of poor selectivity.17 

Recently, Kanan and coworkers18,19 have developed a novel non-catalytic approach to 

synthesizing 2,5-FDCA from 2-furoic acid and 1.55 equivalents of Cs2CO3 at low 

temperatures (200 °C) and moderate pressure (8 bar) in good yield (89%). This Cs2CO3-

mediated pathway provides 2,5-FDCA exclusively, but reactions of benzoic acid and 

cesium carbonate provide mixtures of diphthalates, triphthalates, and tetraphthalates. 

 

Table 1. Literature evaluation of MX2 catalyzed furan disproportionation13,17  

 

 

Several catalysts have been studied in the literature for synthesis of 2,5-FDCA via 

catalytic disproportionation. When comparing their reported effectiveness toward the 

disproportionation of potassium furoate, the activity trends CdI2 > ZnI2 > ZnCl2 > 

CdCl2.
13,

 
17 Analysis of the literature indicate that iodide salts of Cd and Zn are more 

effective catalysts for benzoate disproportionation and isophthalate isomerization than 

other halides.7,20,21 Thus, the d10 metal center and iodide counterion were identified as 
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important components, and we were curious whether CuI would be effective in the 

Henkel reaction as transition-metal based, monovalent alternative to the group 12 

catalysts. Notably, the d9 salt CuCl2 is not effective for the synthesis of 2,5-FDCA under 

the same conditions as CdI2.
13 

In order to access dicarboxylic acids from bio renewable sources and provide a 

better route to 2,5-FDCA towards sustainable PEF, we sought to discover cadmium-free, 

highly selective catalytic conditions for disproportionation or isomerization of aromatic 

carboxylates. We have studied CuI mediated disproportionation of potassium furoate to 

2,5-FDCA to advance this approach. The principles we have found from furoate 

disproportionation are applicable to other aromatic carboxylates, as well as isomerization 

of dicarboxylates. 

 

Results and Discussion 

The Henkel reaction occurs at high temperatures at a solid-solid interface of an 

inhomogeneous mixture of substrate and catalyst. To mitigate heat transfer issues and 

temperature gradients that might influence reproducibility, we fabricated an aluminum 

insert for a stainless-steel Parr autoclave reactor with evenly distributed slots for four 

glass reaction vessels and a position for a thermocouple. This reactor configuration 

allows parallel reactions, with the temperature of the aluminum insert governing the 

temperature in each reactor vessel. Reactions performed in parallel under the conditions 

of equation 1 established good reproducibility within three reactors in a single experiment 

(yield = 75 ± 2%), and multiple experiments demonstrate good reproducibility between 
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experiments (n = 6, yield = 75 ± 2%). In contrast, parallel reactions performed in three 

vessels loosely placed in a single Parr autoclave (in the absence of the aluminum insert) 

had poor tube-to-tube reproducibility (yield = 32 ± 28%). We attribute the difference 

between experimental setups to temperature aberrations within the reactor that are 

removed with the aluminum block. A second, key factor relates to effective mixing 

catalyst and carboxylate substrate. Optimal mixing of reactants involved grinding (2 – 3 

g) in a mortar and pestle for at least 5 minutes and provided 20% higher yield of 2,5-

FDCA after thermal treatment than material mixed with a spatula or in a small mortar and 

pestle (0.2 g material). Extended grinding gives equivalent yields to the optimal time 

noted above. Reactions that afford appreciable 2,5-FDCA are visually identifiable by the 

change in color from the white of the staring material to red. Reaction mixtures heated at 

temperatures above 300 °C appear darker in color, and this correlates with the formation 

of appreciable amounts of black intractable side-products. In the absence of CuI, 

potassium furoate heated to 300 °C is recovered quantitatively, indicating that conversion 

requires a catalyst such as CuI. 

 

The isolated yield is 25% lower than the theoretical yield. The unaccounted-for-

material could be side-products from the reaction including 2,4-FDCA and/or intractable 

solids13 or 2,5-FDCA lost during workup. Experiments were performed to identify the 

total yields of both 2,4- and 2,5-FDCA by analysis of the entire reaction mixture. The 

crude red solid obtained from the reactor vessel was partially soluble in DMSO or water. 
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The insoluble material contained species derived from the copper catalyst and pyrolyzed 

organics, which account for a portion of the lower-than-theoretical yield. 1H NMR 

spectra in DMSO-d6 of the soluble portion contained broad signals and could not be used 

to accurately quantify the products present. Instead, acidification of the aqueous solution 

precipitated pure 2,5-FDCA (75% isolated yield). Analysis of the remaining soluble 

portion by 1H NMR spectroscopy revealed 2,4-FDCA (7% yield), 2,5-FDCA (10% yield) 

and trace furoic acid (<1%). 

 

The product yields are sensitive to the reaction temperature. The isolated yield of 

2,5-FDCA increases from 0 to 75% as the reaction temperature increases from 260 – 300 

°C (Table 2). The maximum isolated yield of 2,5-FDCA is obtained in reactions heated 

at 300 °C. More insoluble black materials form and isolated yields of 2,5-FDCA decrease 

at temperatures above 300 °C.  

 

Carbon dioxide appears to have a number of roles in the reaction. First, it is 

needed for conversion to occur. Reaction mixtures after thermal treatment of potassium 

furoate under high pressure of N2 (60 bar) but in the absence of CO2 contain only starting 

materials, even in the presence of the CuI catalyst. As noted above, potassium furoate is 

also recovered quantitatively in experiments that lack copper iodide. Thus, we conclude 
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Table 2. Temperature effects on CuI-catalyzed furoate disproportionation, assessed by % 

yield of isolated 2,5-FDCA. 

Temp (°C)a Isolated Yield of 

2,5-FDCA (%)b 

260 0 

280 20 (± 2) 

290 70 (± 2) 

300 75 (± 1) 

310 67 (± 1) 

a1.75 mmol potassium furoate, 0.18 mmol CuI, 2 h under CO2 (40 bar). bAverage of 3 

reactions  

 

that CO2 and CuI interact to generate an active catalytic species. In addition, conversion 

increases as carbon dioxide pressure increases. For example, approximately 50% of 

potassium furoate is converted in experiments under only 1 bar of CO2, whereas 73% 

conversion is observed with 10 bar of CO2 under otherwise equivalent conditions. 

Second, the CO2 pressure affects the yield by favoring the dicarboxylate product. 2,5-

FDCA yields are lower in experiments with lower CO2 pressure and higher with 

increased pressure (Table 3). For example, the only isolable species after thermolysis 

under 1 bar of CO2 is the starting material, and 2,5-FDCA is not formed in detectable 

quantities even though half of the potassium furoate reacts. Increased pressure of CO2 to 
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10 bar increases the 2,5-FDCA yield to 33%. More intractable black materials are formed 

in these low CO2 pressure experiments than those at 40 bar of CO2, suggesting that the 

amount of carbon dioxide affects the accessible reaction pathways. Moreover, higher 

carbon dioxide pressure also inhibits decomposition of the 2,5-FDCA product. 

Thermolysis of dipotassium 2,5-furandicaboxylate under only 1 bar of CO2 (in the 

presence of CuI) results in a 20% loss of starting material after 1 h, whereas the 2,5-

FDCA yields at 40 bar are identical after 1 h and 18 h (see Table 4 below). 

Decomposition likely occurs from both the carboxylate and the dicarboxylate under low 

pressure of CO2. Because both starting material and products contain carboxylate 

moieties and similar trends are observed in potassium benzoate disproportionation 

reactions, we infer that the decomposition pathway to intractable black materials involves 

loss of the carboxylate moiety.  

 

Table 3. Pressure effects on CuI-catalyzed furoate disproportionation, assessed by % 

yield of isolated 2,5-FDCA. 

CO2 Pressure (bar)a Total Yield of 2,5-FDCA (%)c 

1 0 (0)d 

10 33 (0)e 

40  85 (75) 
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Table 3. (continued) 

N2 pressure (bar)  

60b 0 (0) 

a1.75 mmol potassium furoate, 0.18 mmol CuI, 300 °C, 1 h. bNitrogen used in place of 

CO2. 
cparenthesis indicate isolated yield d47% starting material e27% starting material  

 

The time dependencies of conversion and yield are not equivalent, suggesting that 

the formation of 2,5-FDCA proceeds through a multistep pathway involving a less 

reactive intermediate than the starting materials. First, conversion of potassium furoate 

occurs rapidly at 300 °C. After 5 minutes, 95% of starting material is consumed and 

within 30 minutes conversion is essentially complete ( >99%, Table 4). Although 

conversion is high after 5 minutes, total 2,5-FDCA yield is only 65% of the theoretical 

yield. Longer reaction times give increased yield, to 81% after 30 minutes and 85% after 

1 hour, at which point the reaction is complete. The yield remains constant even as the 

reaction mixture is held at 300 °C for 18 hours. This consistency over time indicates that 

the decomposition pathway is not accessible by dicarboxylates at 300 °C under 40 bar 

CO2. As noted above, yields decrease at temperatures above 300 °C as a decomposition 

pathway is accessed, and more intractable black material is formed. 

As noted above, 2,4-FDCA is produced as a side product in this reaction. 

Selectivity is calculated based on 2,5-FDCA yield vs 2,4-FDCA yield. The selectivity is 

significantly higher (92%) than the previous state-of-the-art CdI2 based catalyst (70%).13 

Although yields drop at higher temperatures, selectivity remains constant. As catalyst 
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loading is increased, isolated yield of 2,5-FDCA decreases, as selectivity for 2,5- vs 2,4-

FDCA decreases as well. At 25 mol % catalyst, isolated yield of 2,5-FDCA drops to 66% 

as selectivity drops to 71%. As the catalyst loading increases to 100% (stoichiometric 

catalyst), a very large amount of intractable black material forms, and no 2,5-FDCA is 

isolated. In these experiments, the selectivity of the crude mixture decreases to 41% (by 

1H NMR in D2O). In experiments when the catalyst loading is decreased below 10%, 

marginal increases to selectivity may be observed, but the reaction does not go to full 

conversion.  

 

Table 4. Reactions of potassium furoate with 10 mol % CuI at 300 °C under CO2 (40 

bar) varying conditions for time and temperature. 

Time (at 

300 °C)a 

Conversion 

(%)b 

Diacid Yield 

(%)c 

Total yield 

of 2,5-FDCA 

(%)d 

Selectivity 

for 2,5- vs 

2,4-FDCA 

(%)e 

Isolated 

Yield (%)f 

5 min 95 (± 2) 74 (± 4) 65 (± 3) 87 44 (± 1) 

30 min >99 87 (± 4) 81 (± 3) 93 71 (± 2) 

1 h >99 92 85 92 76 (± 2) 
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Table 4. (continued) 

18 h >99 92 85 92 75 (± 1) 

1 hf >99 85 78 92 61 (± 1) 

aThis refers to the elapsed time at the designated temperature. The reactor requires 

roughly 50 minutes to heat to the designated temperature. bTotal % conversion of 

potassium furoate c% Yield of total 2,4-FDCA and 2,5-FDCA combined from isolate and 

supernatant d% Yield of total 2,5-FDCA from isolate and supernatant e[% yield of 2,5-

FDCA/%yield of combined FDCA] X 100 f% Yield of pure washed 2,5-FDCA gReactor 

temperature at 320 °C 

 

Although most reported Henkel-type reactions use potassium carboxylates for 

disproportionation, sodium furoate was identified as a possible starting material for the 

synthesis of 2,5-FDCA in experiments using ZnCl2 as a catalyst (2,5-FDCA forms in 

15% yield after 3 h at 250 °C)17 In this CuI-catalyzed system, sodium furoate is effective 

as a metal carboxylate precursor as well, with competitive yields of 2,5-FDCA compared 

reactions of potassium furoate with CdI2 catalysts. As discussed above, reactions of 

potassium furoate with CuI require temperatures of 280-300 °C. Sodium furoate 

disproportionation catalyzed by CuI requires temperatures above 300 °C. Sodium furoate 

heated to 300 °C for 2 h returns only starting material. At 320 °C, 2,5-FDCA increases to 

10% and at 340 °C, yield further increases to 59% (Table 5).  

 



www.manaraa.com

23 
 

 

 

Table 5. Temperature effects on CuI-catalyzed sodium furoate disproportionation, 

assessed by % yield of isolated 2,5-FDCA. 

Temperature 

(°C) 

Isolated Yield of 

2,5-FDCA (%) 

300 0 

320 10 

340 59 

Conditions: 10 mol % CuI, CO2 (40 bar), 2 h 

 

Copper(I) iodide is also an effective catalyst for the disproportionation of 

potassium benzoate. As noted above, benzoate disproportionation reactions typically 

occur at higher temperatures than furoate disproportionation. Heating potassium benzoate 

to 350 °C under 40 bar of CO2 in the presence of 10 mol % CuI reacts to form 

terephthalic acid in 60% yield after 16 hours (Eq. 3). Temperatures above 350 °C could 

not be tested due to limitations with the autoclave reactor. Similar experiments were 
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attempted with sodium benzoate, but at 350 °C starting material is recovered 

quantitatively.  

 

 

 

Copper(I) iodide was also investigated as a potential catalyst for the isomerization 

of dipotassium isophthalate in the synthesis of terephthalate (Table 6). Under similar 

conditions used for potassium benzoate disproportionation (Eq. 3), terephthalic acid is 

recovered from isophthalate isomerization in 21.4% yield. Interestingly, terephthalic acid 

yield is only 21.4% while conversion of starting material is 46.6%. The unaccounted-for 

material can be attributed to black intractable precipitate. Isophthalic acid and 

terephthalic acid have similar solubility making the workup more challenging, as the 

acidified product is a mixture of both isophthalic and terephthalic acid. The product to 

starting material ratio of the acidified mixture was determined by spectroscopy. Disodium 

isophthalate was also investigated as a starting material, but no conversion occurred at 

350 °C. Sodium benzoate and disodium isophthalate have been reported to be converted 

to terephthalate in the presence of CdI2, although they require temperatures of 450 °C.22 
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Table 6. Reaction of dipotassium isophthalate to terephthalate as various times. 

Time (h) Conversion (%)a Isophthalic Acid (%)b Terephthalic Acid (%)c 

1 15.5 84.5 0 

3 45.8 54.2 14.5 

16 46.6 53.4 21.4 

Conditions: 10 mol % CuI, CO2 (40 bar), 350 °C, run in triplicate. a% conversion of 

isophthalate  b% recovery of isophthalic acid c% yield of terephthalic acid  

 

Conclusion 

In conclusion, we have developed methods for utilizing CuI, an inexpensive, 

commercially available catalyst for disproportionation and isomerization of aromatic 

carboxylates to dicarboxylates. Compared to the previous state-of-the-art with CdI2, total 

yield of 2,5-FDCA has increased to 85% in 1 h versus from 64% in 5.5 h with CdI2. The 

drawbacks for CuI is the increased reaction temperature to 300 °C from 260 °C and the 

need for high pressures of CO2. CO2 appears to be involved in the catalytic pathway, due 

to the lack of conversion in the absence of CO2, under N2 conditions. The high pressures 

of CO2 required imply that CO2 acts to activate the catalyst, as well as stabilize the 

intermediate and inhibit decomposition. The amount of catalyst plays a significant role in 
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the selectivity of 2,5- vs 2,4-FDCA, as increased catalyst concentration favors 2,4-FDCA, 

but in instances when the catalyst concentration is too low, the reaction doesn’t reach full 

conversion as the catalyst is not mobile during the reaction. Potassium benzoate and 

dipotassium isophthalate are also able to be converted to terephthalate under analogous 

conditions. Finally, we have discovered that CuI can catalyze the disproportionation of 

sodium furoate as well, albeit at higher temperatures than the potassium analog. These 

reactions can potentially provide a new non-oxidative pathway for the synthesis of 2,5-

FDCA which has commercial applications for polymer synthesis. 

 

Experimental 

Synthesis of 2,5-furan dicarboxylic acid from potassium furoate 

Dried potassium furoate (262 mg, 1.75 mmol) was ground together with copper (I) iodide 

(33 mg, 0.17 mmol) into a clean test tube. The test tube was placed in an aluminum block 

inside of a Parr reactor. The reactor was charged and vented with CO2 three times to 

remove air. After degassing for the final time, the reactor was charged with CO2 (40 bar). 

The reactor was placed in a heating mantle and heated to 300 °C for 16 hours and then 

cooled to room temperature. 

The reactor was vented slowly and the reddish-black solid was removed from the test 

tube, and dissolved in hot water. The solution was filtered through a small charcoal layer 

over a glass filter plug, and was acidified with HCl (aq) precipitating out a white solid. 

After standing for one hour, the mixture was centrifuged, the supernatant decanted, and 

the solid washed with water. 
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The white solid was dried, yielding pure 2,5 FDCA (73.5 mg, 0.47 mmol). The 

supernatant and wash solutions were combined. After extraction with DMSO, it was 

determined that the wash solutions contained KCl (118.3 mg, 1.59 mmol), furoic acid 

(5.6 mg, 0.05 mmol), 2,4 FDCA (8.3 mg, 0.05 mmol) and 2,5 FDCA (31.0 mg, 0.20 

mmol). The materials in total yielded 78.5 % 2,5 FDCA with 85 % recovery of organic 

furoates, and 90.8 % yield of KCl. 

Synthesis of 2,5-furan dicarboxylic acid from sodium furoate 

Dried sodium furoate (235 mg, 1.75 mmol) was ground together with copper (I) iodide 

(33 mg, 0.17 mmol) into a clean test tube. The test tube was placed in an aluminum block 

inside of a Parr reactor. The reactor was charged and vented with CO2 three times to 

remove air. After degassing for the final time, the reactor was charged with CO2 (40 bar). 

The reactor was placed in a heating mantle and heated to 340 °C for 2 hours and then 

cooled to room temperature. 

The reactor was vented slowly and the reddish-black solid was removed from the test 

tube, and dissolved in hot water. The solution was filtered through a small charcoal layer 

over a glass filter plug, and was acidified with HCl (aq) precipitating out a white solid. 

After standing for one hour, the mixture was centrifuged, the supernatant decanted, and 

the solid washed with water. 

The white solid was dried, yielding pure 2,5 FDCA (80 mg, 0.51 mmol, 58.3 % yield). 

Synthesis of terephthalic acid from potassium benzoate 

Dried potassium benzoate (108 mg, 0.67 mmol) was ground together with copper (I) 

iodide (13 mg, 0.07 mmol) into a clean test tube. The test tube was placed in an 
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aluminum block inside of a Parr reactor. The reactor was charged and vented with CO2 

three times to remove air. After degassing for the final time, the reactor was charged with 

CO2 (40 bar). The reactor was placed in a heating mantle and heated to 350 °C for 2 

hours and then cooled to room temperature. 

The reactor was vented slowly and the reddish-black solid was removed from the test 

tube, and dissolved in hot water. The solution was filtered through a small charcoal layer 

over a glass filter plug, and was acidified with HCl (aq) precipitating out a white solid. 

After standing for one hour, the mixture was centrifuged, the supernatant decanted, and 

the solid washed with water. 

The white solid was dried, yielding terephthalic acid (28 mg, 0.17 mmol, 50.7 % yield). 

 

Synthesis of terephthalic acid from dipotassium isophthalate 

Dried dipotassium isophthalate (188 mg, 0.78 mmol) was ground together with copper (I) 

iodide (15 mg, 0.08 mmol) into a clean test tube. The test tube was placed in an 

aluminum block inside of a Parr reactor. The reactor was charged and vented with CO2 

three times to remove air. After degassing for the final time, the reactor was charged with 

CO2 (40 bar). The reactor was placed in a heating mantle and heated to 350 °C for 3 

hours and then cooled to room temperature. 

The reactor was vented slowly and the reddish-black solid was removed from the test 

tube, and dissolved in hot water. The solution was filtered through a small charcoal layer 

over a glass filter plug, and was acidified with HCl (aq) precipitating out a white solid. 
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After standing for one hour, the mixture was centrifuged, the supernatant decanted, and 

the solid washed with water. 

The white solid was dried, yielding a mixture of terephthalic acid and isophthalic acid at 

a ratio of roughly 1:4 respectively by 1H NMR spectroscopy (90 mg, 0.54 mmol, 69 % 

recovery). 
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CHAPTER 3. UNIQUE APPROACHES TO CATALYSIS ON AN AUTOMATED 

SYNTHESIS PLATFORM 
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Naik, Dr. Igor I. Slowing, Dr. Aaron D. Sadow* 

 

Abstract 

Herein we describe the use of an automated synthesis platform (Chemspeed SWING-XL) 

to develop methods for studying chemical kinetics, synthesis of heterogeneous catalysts 

and the preparation of synthetically challenging butadiene derivatives. Kinetics of 

[tris(oxazolinyl)borato]cobalt catalyzed cyclohexane oxidation was studied in detail 

through automated sampling and quenching of a small library of reactions. 

Heterogeneous catalysts were prepared through iterative additions of a Pd solutions onto 

SiO2, TiO2, CeO2 and Al2O3 supports which were used in hydrogenation reactions. 

Specialized high-pressure pumps were used to dispense fresh catalyst solutions into a 

heated, pressurized reactor to optimize the yield of functionalized butadiene monomers. 

Other Author’s Contributions 

Regina Reinig: Responsible for synthesis of ToMMX catalysts and reaction analysis. 

Bradley Schmidt: Responsible for preparation and analysis of enyne metathesis 

experiments. 
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Hui Zhao: Responsible for synthesis of CeO2 and experimentation and analysis of 

hydrogenolysis reactions of guaiacol. 

Pranjali Naik: Analysis of heterogeneous catalysts by ICP-MS and Chemisorption. 

 

General Introduction 

The growth of automation is gaining influence in all facets of life, economy, 

industry and technology. As new technologies advance, development of new methods is 

required to utilize these technologies to their fullest capability. Wide-spread prominence 

of automation is appearing across all fields, including the field of Chemistry, from 

fabrication of 3D printed reactors1–3 to its emergence in the form of high-throughput 

experimentation (HTE).4–10 To maximize output from these new instruments, we seek to 

develop new methods to not only increase productivity but allow us to perform novel 

experiments which would otherwise prove impossible without the instrument. Using this 

technology, novel reactions can be performed round the clock, limiting human error, 

increasing data points and running parallel reactions to minimize variance. 

High-throughput experimentation is typically used for assessing the effect of a 

specific reaction parameter on yield and/or selectivity.11–15 While these types of 

experiments can give optimized conditions for a specific parameter, full reaction 

optimization can be more difficult to determine. Fortunately, more unique methods of 

experimentation are being developed to get more useful information from these advanced 

technologies. Sigman and coworkers have used mathematical correlations between 

quantifiable properties of a catalyst ligand interaction to predict and optimize 
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enantioselectivity of a reaction.6 Hartwig and coworkers describe a technique titled Snap 

Deconvolution which allows multiple reactants to be mixed in one vessel, and 

subsequently analyzed automatically by mass spectrometry.9 These Design of Experiment 

(DOE) type experiments are popular methods of optimizing a reaction. It involves 

mapping a quantifiable result against secondary interactions as a means to optimize a 

system. This method identifies a system over the sum of its individual parts. A more 

accurate and detailed assessment can be made by changing variables individually. Herein 

we describe our strategies of studying the kinetic profile of a reaction and methods for 

preparing heterogeneous catalysts.  

 

Introduction: Chemical Kinetics  

Determining the chemical kinetic landscape of a reaction is invaluable to 

discovering mechanistic information. To determine a rate law, a reaction needs to be 

monitored at a specific set of conditions/parameters. Variables such as concentration, 

solvent, temperature and substrates can all effect the k, rate constant. Acquiring data 

points to establish a rate law at a specific set of conditions can be complicated and/or 

time consuming, if not tedious. Determining the rate under multiple variables, 

exponentially more experiments need to be performed, increasing the difficulty of 

accruing all the appropriate data. Establishing a method of performing these experiments 

and accumulating all the data would be invaluable. Automation provides a way to study a 

reaction modifying multiple variables simultaneously to determine a broad chemical 

kinetic profile, at a low cost of man-hours. Using a high-throughput robot, we can acquire 

the data for multiple kinetic reactions simultaneously, altering some parameters which 
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keeping others stable. Understanding all these details provide detailed mechanistic insight 

and allow optimization of a rate of reaction. 

Selective or partial oxidation of aliphatic alkanes can be challenging.16 Cobalt is 

often used industrially as an oxidation catalyst17 and has more recently been 

demonstrated to be efficient at more selective oxidations.18 These oxidations are 

incredibly useful industrially, as they can be used to synthesize adipic acid and 

caprolactam, vitally important commodities in the nylon industry (Scheme 1).19 

 

Scheme 1. Conversion of Cyclohexane to Adipic Acid or Caprolactam 

 

Regina Reinig began to synthesize a series of [tris(oxazolinyl)borato]cobalt 

compounds, which showed catalytic activity towards oxidation of aliphatic alkanes.20 

Preliminary studies of this reaction gave encouraging results, showing favorable 

selectivity towards the alcohol, as opposed to the overoxidized ketone side-product. We 

were interested in studying the kinetics of this reaction, to develop a broad understanding 

of the system and subsequently be able to optimize the reaction. As multistep oxidations 

can require a lot of data to fully interpret (Figure 1) we worked to develop a method to 

acquire as much data as possible as we began to study the kinetics of the oxidation of 
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aliphatic alkanes to alcohols and ketones earth abundant first row transition metal 

catalysts. 

 

 

Figure 1. Kinetic Trace of a Generic 3 Step Oxidation Reaction (Simulated using 

COPASI) 

 

Results and Discussion: Chemical Kinetics 

Using our unique Chemspeed SWING-XL synthetic robot, we devised a strategy 

for automated sampling of parallel reactors to quench reactions at specific time intervals. 

A small library was assembled varying either catalyst, concentration, solvent or oxidant 

while running parallel reactions in triplicate to minimize error and assess instrument 

precision. Our strategy involved time-controlled sampling of a reaction directly into a 

small sampling vial. As these oxidation reactions occur at room temperature, we needed a 
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method to immediately quench the samples to prevent the reaction from continuing in the 

sampling vials. 

The majority of these experiments utilized hydrogen peroxide as the oxidant. We 

required a quenching agent which would quickly decompose or quench hydrogen 

peroxide, without affecting the overall reaction. Potassium iodide was an intriguing 

option as a decomposition catalyst, as KI is a well-known catalyst to decompose H2O2 to 

H2O and O2. Unfortunately, this catalytic decomposition caused several issues. First, it 

was exothermic which led to solvent, substrate and product evaporation. Secondly, we 

discovered that it also catalyzed side-reactions with the cyclohexylperoxy intermediate. 

Between these two issues, conversion and yield was difficult to assess. After thoughtful 

analysis we chose to use stoichiometric triphenylphosphine as a reducing agent, as it 

rapidly consumes H2O2 as it oxidizes into triphenylphosphine oxide. This quenching 

reaction is also fairly exothermic, but when the PPh3 was dissolved in solution, we found 

that the extra solvent helps mitigate heat issues. This method also avoided any unwanted 

side reactions. 

 

After determining a sampling and quenching technique, we begin to study the 

kinetics of cyclohexane oxidation (Eq. 1) using a series of cobalt catalysts at three 

concentrations. We used an 8-mL vial array from the instrument, and tested CoCl2, 

ToMCoCl and ToMCoOAc as catalysts with catalyst amounts of 1, 3 and 5 µmol (0.16, 

0.48 and 0.80 mM) (Figure 2). Zero-time samples were taken immediately after 
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introduction of the oxidant, and subsequent samples were taken sequentially over time. 

The time samples were analyzed by GC-FID with an internal standard, and the rate 

constant of the first and second oxidation was determined for each experiment (Figure 3). 

The integrity of this method was analyzed by comparing the rate constants over multiple 

identical experiments (Table 1). While each individual time point may have a small 

amount of error involved in the handling or the GC calibration, once all the points are 

plotted versus time the magnitude of the errors are minimized and the standard deviation 

of the rate constants is very small (k1 = 1.19 x 10-6 M/s, k2 = 1.41 x 10-4
 M/s). 

 

 

Figure 2. Reactor array of cobalt catalysts with multiple catalyst loadings 
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Figure 3. Kinetic Trace of Cyclohexane Oxidation Catalyzed by ToMCoOAc. 

Conditions: Cyclohexane (1.6 mL, 15 mmol, 2.45 M) oxidation catalyzed by ToMCoOAc 

(1 µmol, 0.16 mM) in dichloromethane/acetonitrile (95%, 1 mL) in the presence of 

mCPBA (345 mg, 2.0 mmol) at 25 °C over 24 hours. 
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Table 1. Reproducibility of Kinetic Data as Evidenced by Rate Constants 

Experiment k1 (M/s) k2 (M/s) 

1 0.0001641 0.003948 

2 0.0001645 0.003803 

3 0.0001668 0.004147 

Average 0.0001651 0.003966 

Std. Dev. 1.19 x 10-6 1.41 x 10-4 

Conditions: Cyclohexane (1.6 mL, 15 mmol, 2.45 M) oxidation catalyzed by ToMCoOAc 

(1 µmol, 0.16 mM) in dichloromethane/acetonitrile (95%, 1 mL) in the presence of 

mCPBA (345 mg, 2.0 mmol) at 25 °C over 24 hours. 

 

 After gaining confidence in our method, we analyzed a series CoX2 salts as 

catalysts for cyclohexane oxidation (Figure 4). CoCl2, ToMCoCl and ToMCoOAc were 

the catalysts tested using the same method used to determine the rate constants. All three 

catalysts have similar % selectivity towards cyclohexanol, reaching the highest selectivity 

around the 2 h mark (85-90%) which slowly decreases as cyclohexanone and 

caprolactone are produced. ToMCoOAc is the most active catalyst, having the highest 

turnover numbers (TON) for cyclohexane at 86 turnovers. 
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Figure 4. Comparison of Cobalt(II) Catalysts for Cyclohexane Oxidation (a) Effect of 

Catalyst on Cyclohexanol Turnover Numbers (b) Effect of Catalyst on Cyclohexanol 

Selectivity (%) 

 

 We began to investigate other first row transition metals, studying Fe and Ni 

compounds in analogous oxidation reactions to the conditions described above. We found 
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ToMNiOAc to be a more selective catalyst towards cyclohexanol conversion than 

ToMCoOAc. ToMFeOAc was also tested as a catalyst, but found to be less selective 

towards cyclohexanol conversion than the Co and Ni analog. 

 

Figure 5. Comparison of Several ToMMOAc Catalysts for Cyclohexanol Conversion 

 

 We began to expand the scope of our reactions to other oxidants as well, but had 

issues with using aqueous oxidants. When H2O2 was used as an oxidant in place of 

mCPBA, we were unable to acquire any reproducible data. Multiple samples acquired 

within a single time-point would have a broad range of yield and selectivity. As 

everything within the reaction mixture appeared to be a monophasic solution, but our GC 

analysis was not giving us reliable data, we attempted to study the yield and selectivity 

via Raman spectroscopy. Jonathan Bobbitt in Dr. Emily Smith’s research group studied 

the reaction under light microscopy and Raman spectroscopy (Figure 6). We quickly 

learned that although the solution appeared uniform and monophasic, small micelles were 
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forming in solution which likely affected the kinetics of these experiments, as well as 

making the analysis of the data challenging, if not impossible by GC-FID.  

 

 

Figure 6. Raman Spectroscopic Data on Cyclohexane Oxidation. (a) Light microscopy 

(b) Raman spectra of described samples  

  

 The next step to further improve this method would involve a faster method of 

analysis. A typical experiment following the kinetics of 6 reactions over 24 hours can be 

150 data points (if collected hourly). This amount of data can be cumbersome to workup. 

When deciphering the data by a typical GC method, this analysis takes 10-12 min per 

sample. Analysis on a full set of data can monopolize the GC continuously for over 36 

consecutive hours. Some potential concepts for resolving these issues would be a 

redesign of the multi-well reactors to allow access points for fiber optic cables. Using 
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these fiber optic cables to perform in-situ IR or Raman spectroscopy could give real-time 

data resolving multiple peaks simultaneously. 

 Moving away from GC analysis would also help alleviate other issues which 

arose during analysis. As noted previously, a quenching agent (PPh3) must be used to 

rapidly consume excess oxidant. As this quenching agent required stoichiometric 

quantities of material, the concentration of PPh3 and OPPh3 in solution was high. Typical 

GC analysis requires very low concentrations of analytes (~10-50 ppm). Although the 

phosphine did not co-elute with our analytes, it did cause the plunger on the autosampler 

arm of the GC to freeze relatively often due to precipitated material in the syringe. It also 

caused problems with the splint-vent on the instrument, as the splint-vent line is not 

heated, so significant amounts of phosphine material condensed in the line clogged it 

completely. This can be a trivial fix but requires down-time on the instrument during 

maintenance which further increases the time for quantifying all samples. 

 The above described methodology has proven to be successful, although many 

adjustments were made over the course of these experiments to fully solve all the issues 

that arise. Expansion to new chemical reactions may prove easier, in situations where 

quenching is not necessary. 

 

Introduction: Heterogeneous Catalyst Synthesis  

Efficient upgrading of lignocellulosic biomass to essential commodity chemicals 

can have the impact of lowering anthropomorphic carbon footprint on the earth. 

Developing new catalysts or finding easier ways of synthesizing efficient catalysts for 
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lignin depolymerization, and biomass upgrading can go a long way towards these goals. 

Heterogenous catalysts are used for a broad range of chemical transformations. Some of 

the advantages of heterogenous catalysts over homogeneous catalysts include the ease of 

separating the catalyst from the reaction mixture and the potential for catalyst 

recyclability. Reports of heterogeneous catalysts for lignin depolymerization and biomass 

upgrading are ubiquitous.21–26 Our goal is to use an automated synthesis robot to prepare 

an array of solid supported catalytic materials.  

Effectiveness of heterogeneous catalysts are governed by many properties, which 

include identity of support material, surface area of support material, catalyst loading and 

catalyst particle dispersion.27 A common route to preparation of a heterogeneous catalyst 

is through the incipient-wetness method.28,29 This method involves dispensing a small 

volume of a concentrated solution of pre-catalyst to the support while grinding the 

mixture in a mortar and pestle. The solution is drawn into the pores of the material by 

capillary action. This is a slow, tedious process which requires physical labor. As the 

material properties may be influenced by mixing and grinding, often perfect replication 

of technique and therefore materials can be challenging. Making multiple materials for 

experimentation is laborious, time consuming and can suffer from human error during 

preparation.  

An easier method of preparing these kinds of material could be designed in which 

larger volumes of dilute pre-catalyst solution are added over mixed supports as the 

solution is slowly evaporated in an iterative fashion (similar in scope to “wet 

impregnation”). Issues arise in which the pre-catalyst crystallizes out of the solution as it 

becomes more concentrated which potentially leads to poor catalyst dispersion and 
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inactive catalysts. Our goal is to utilize automation combined with high throughput 

experimentation to prepare libraries of heterogeneous catalyst materials, made in parallel, 

with high reproducibility. We hypothesize that iterative additions of dilute solutions with 

subsequent of evaporation steps will limit the large crystallization that occurs during a 

single addition of a more concentrated solution. This would be difficult to access 

conventionally, as it requires attention at frequent intervals over a long period of time 

(10-26 h).  

Methods already exist to deposit heterogeneous catalysts on thin films using 

radio-frequency sputtering, to create a library of catalysts which have up to three metals 

deposited onto it. This involves iterative additions of 10 nm layers of material.30 While 

this method is excellent for making a catalyst library for primary screening, it doesn’t 

allow scale-up methods, which would require traditional catalyst preparation. Liquids 

have been added to thin films in similar iterative fashion using methods which include 

complexation, gelation, crystallization, ion exchange and grafting. Impregnation is the 

addition of a catalyst or pre-catalyst in solution to a porous solid which will either graft to 

the solid, or be calcined and activated on the surface of the material. 

We assessed our goal by preparing a library of heterogeneous catalysts for lignin 

depolymerization. Our initial strategy involved identifying several supports and potential 

pre-catalysts, and synthesizing a small library of these materials. Catalyst loading was 

confirmed by inductively coupled plasma mass spectrometry (ICP-MS), and dispersion 

was calculated by chemisorption. We then used these prepared materials in experiments 

in high-pressure reactors to attempt to hydrogenate lignin model compounds.  
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Results and Discussion: Heterogeneous Catalyst Synthesis  

We chose ceria (CeO2), alumina (Al2O3), silica (SiO2) and titania (TiO2) as our 

target supports, and initially began to use Pd(OAc)2 1% w/w Pd to support as our pre-

catalyst. The typical procedure was to dissolve x mg of Pd(OAc)2 in acetone at the 

appropriate concentration for a 1% Pd addition by mass after n iterations. Solid supports 

were weighed out and placed into conical vials in an aluminum block while undergoing 

stirring from a magnetic stir bar. The Pd solution (0.9 mL) was dispensed into 0.5 g of 

support, after which, the block is moved into a reactor heated to 60 °C to allow the 

solvent to slowly evaporate over 90 minutes. The block was then removed from the 

reactor into the solvent dispensing area, and the process was repeated over again. This 

iterative addition process was run comparing materials with 5-13 iterations.  

After the Pd solutions were added, the materials were calcined in a box furnace 

and reduced in a tube furnace under flowing hydrogen. The materials were then analyzed 

by ICP-MS to determine the weight % Pd on the support and then analyzed by 

chemisorption to determine the % dispersion of the Pd on the support. The materials were 

then tested as hydrogenation catalysts, as they were used in hydrogenation experiments 

with guaiacol. Effectiveness of the catalyst was gauged based upon total conversion and 

cyclohexanol formation. 

 Investigation into SiO2 materials began with iterative additions of Pd(OAc)2 

solution into the stirred supports. ICP measurements demonstrated consistent amounts of 

Pd being deposited on the surface on materials made with 5-12 iterations (Table 2). 

Interestingly, dispersion and iterations did not show strong correlation. The conical vial 

and stir bar was necessary for optimal material preparation. Experiments performed in a 
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20-mL scintillation vial without a stir-bar had poor catalyst loading and dispersion (Table 

2, Entry 4). After treatment, significant amounts of Pd(OAc)2 precipitate was observed on 

the walls of the vial.  

 

Table 2. Catalyst Loading and Dispersion of Pd on SiO2 Support 

Entry Iterationsa Pd w/w%b Dispersion (%)c Dispersion (%) (ICP)d 

1 5 0.71 (0.012) 77.7 97.1 

2 7 0.78 (0.037) 83.2 104.1 

3 11 0.74 (0.012) 83 103.7 

4 11e 0.74 (0.042) 19.2 27.5 

5 12 0.7 (0.028) 69.7 87.1 

a Number of catalyst solution addition/evaporation steps. b Calculated by ICP-MS. c 

Dispersion calculated based on 1 w/w% Pd on support. d Dispersion calculated based on 

Pd loading as calculated from ICP-MS measurements. e Material vortexed while 

evaporating solvent in absence of stir-bar in a 20-mL glass scintillation vial. 

 

 Investigation into the Al2O3 materials gave similar results as the SiO2 materials 

(Table 3). Pd amounts were consistent between iterations as calculated by ICP-MS. 

Unlike with SiO2, materials prepared in 11 or 12 iterations had significantly higher 

dispersion versus materials prepared with only 5 or 7 iterations. As with SiO2 materials, 

experiments performed in a 20-mL scintillation vial without a stir-bar had poor catalyst 
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loading and dispersion (Table 3, Entry 4). This indicates that the shape of the vial and 

method of mixing was important to the overall quality of the material. 

 

Table 3. Catalyst Loading and Dispersion of Pd on Al2O3 Support 

Entry Iterationsa Pd w/w%b Dispersion (%)c Dispersion (%) (ICP)d 

1 5 0.83 (0.014) 57.9 69.7 

2 7 0.84 (0.014) 24.3 28.9 

3 11 0.76 (0.040) 93.8 109.1 

4 11e 0.81 (0.010) 19.3 24.1 

5 12 0.81 (0.024) 88.3 101.2 

a Number of catalyst solution addition/evaporation steps. b Calculated by ICP-MS. c 

Dispersion calculated based on 1 w/w% Pd on support. d Dispersion calculated based on 

Pd loading as calculated from ICP-MS measurements. e Material vortexed while 

evaporating solvent in absence of stir-bar in a 20-mL glass scintillation vial. 

 

 Investigations into the CeO2 materials gave interesting results in comparison to 

the TiO2 materials (Table 4). There was poor Pd concentration compared to other tested 

supports, and dispersion was similarly poor. Upon close visual observation of the solvent 

additions, some of the commercial supports did not stir consistently. The densities and 

granularities of the supports varied, and this attributed to the consistency of the Al2O3, 

and inconsistency of both CeO2 and SiO2. Neither of the latter materials had the uniform 

stirring of the Al2O3 and this likely attributed to the data. 
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Table 4. Catalyst Loading and Dispersion of Pd on CeO2 Support 

Entry Iterationsa Pd w/w%b Dispersion (%)c Dispersion (%) (ICP)d 

1 11 0.63 (0.007) 50.7 72.1 

2 12 0.81 (0.076) 35.8 82.2 

3 13 0.66 (0.007) 39.6 56.5 

a Number of solvent addition/evaporation steps. b Calculated by ICP-MS. c Dispersion 

calculated based on 1 w/w% Pd on support. d Dispersion calculated based on Pd loading 

as calculated from ICP-MS measurements. 

 A series of hydrogenolysis experiments were performed using some of the 

prepared materials. Reactions using SiO2 supported catalysts had poor-moderate 

conversion (14.7-16.0%), as well as poor-moderate selectivity for cyclohexanol (14.7-

15.4%) (Table 5, Entries 1 and 2). TiO2 supported catalysts (which have yet to be 

analyzed by ICP-MS and Chemisorption) had similarly poor-moderate conversion (17.6-

20.9%) and selectivity (6.7-13.0%) (Table 5, Entries 3 and 4). High dispersion Pd on 

alumina had some of the best results for the conversion of guaiacol (Table 5, Entries 5 

and 6). The catalyst prepared with 12 iterations had 69.4% conversion while the material 

prepared with only 5 iterations had 52.2% conversion. Selectivity for conversion to 

cyclohexanol followed a similar trend with 25.4% selectivity versus 21.2% for the 

material prepared with fewer iterations. CeO2 supported catalysts gave somewhat 

surprising results, conversion of guaiacol was similar between two of the test iterations 

(18.3 vs 20.1% conversion, Table 5, Entries 7 and 8), but as selectivity for cyclohexanol 

was 24.4% in the material prepared with 5 iterations, no cyclohexanol was formed in the 

material prepared with 13 iterations. All the materials discussed above were prepared on 
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commercial grade supports. Hui Zhou prepared CeO2 following the previously reported 

procedure by Nicholas Nelson.31 Pd(OAc)2 was added to this bespoke material over 13 

iterations. Under hydrogenolysis conditions, this material underwent full conversion of 

guaiacol, producing cyclohexanol with excellent (62.5%) selectivity (Table 5, Entry 9). 

Physically, the bespoke ceria was significantly denser than the commercial grade 

material. As noted above, during additions of Pd(OAc)2, there was difficulty with mixing 

some of the materials. Commercial CeO2 in particular, was not able to be mixed 

consistently, if at all. The lab-made CeO2 was both more dense and granular allowing for 

much more efficient mixing, which likely contributed to the increased catalytic response. 

Table 5. Prepared materials as Catalysts for Guaiacol Hydrogenolysis 

 

a Number of catalyst solution addition/evaporation steps. b Calculated by GC-MS. c CeO2 

support prepared by Hui Zhou (non-commercial material) 
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The results of this initial work indicate that this strategy of iterative additions of 

catalyst solution to support materials can perhaps be a new method of preparing catalytic 

materials. To increase success, there are still several areas on which to improve. As 

discussed above, some materials are difficult to stir (commercial SiO2 and CeO2). Lab 

made materials which are prepared with bespoke properties to achieve a better free 

flowing granular solid can help improve that. A more optimized reaction flask with a 

well-fit stir bar can likely help to achieve the same goals. Alternative needles for 

syringing are available as well, which allow for the solution to be dispensed in a spray, as 

opposed to the dropwise addition from a needle that is currently in place. As the 

technology improves, it is feasible to imagine adding solution over solid that is even 

being vortexed to further improve mixing. 

 

Introduction: Enyne Metathesis 

 Functionalized polymers are defined as polymers or macromolecules which are 

chemically bound to an external functional group, often these are prepared by 

modification of the end chain of a polymer. These functionalized have several advantages 

which include ease of separation, synthesis of cross-linked polymers, or even binding an 

expensive or rare material to a polymer. Some of the drawbacks include the difficulty to 

functionalize polymers, by time and/or cost and potentially slower polymerizations with 

poor yield.32 
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 Another potential method toward polymer functionalization could involve 

functionalizing monomers prior to bulk polymerization. Bradley Schmidt began to study 

enyne metathesis as a strategy for synthesizing functionalized monomers (Eq. 2). 

Ruthenium catalysts have been used as a strategy for end-functionalized polymers,33 and 

commonly used as a metathesis catalyst for synthesizing butadiene derivatives.34–36   

 

 

Results and Discussion: Enyne Metathesis 

The PD reactors in the Chemspeed Swing-XL allow for design of intricate 

experiments in sealed reactors. These experiments would typically prove impossible 

using conventional Schlenk glassware. The 6 PD reactors each include a high-pressure 

pump, which allows for dispensing of liquids into the reactors while being heated and 

under pressure and allows for sampling of reaction solution. The reactors are extensively 

modifiable, allowing for pressure to be controlled by regulator or mass flow controller. 

The reactor head also includes multiple Swagelok ports, which allow for installation of a 

dip tube with a ball valve for sampling, or other potential additions like pH probe. 

Conventional Schlenk chemistry restricted these reactions to the limitations of a 

Fisher-Porter vessel. The PD reactors had a pressure rating roughly 10x higher than the 

Fisher-Porter vessel and allowed accurate control over internal reactor temperature and 

stir rate. The effect of increased ethylene pressure was immediately realized as a form of 

increased catalyst turnovers. Further studies indicated that the metathesis catalyst has a 
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very short lifespan. Using the high-pressure pumps, we can add catalyst slowly, after all 

substrates are placed in the sealed reactor after it begins to heat under pressure. Once 

under the described reaction conditions, a catalyst solution can be slowly pumped into the 

reactor, which gives a large increase in conversion by having a continuous source of 

catalyst over the course of addition. We quantified the reaction by turnovers of catalyst 

(Table 6) and found that higher pressures of ethylene enhanced the reaction, and the 

catalyst performed best when it was added slowly to a heated, pressurized reactor. 

 

 

Table 6. Comparison of Different Reactors for Enyne Metathesis. 

Ethylene (bar) TON 

1.5a 80 

40b 20 

40c 200 

Conditions: 60 °C, 2 h. a All substrates added prior to gas addition in high pressure NMR 

tube (0.2 mol% HG-II catalyst) b All substrates added prior to gas addition in Parr reactor 

(1.0 mol% HG-II catalyst) c Reactor pressurized with ethylene (40 bar) and heated prior 

to slow addition of catalyst through high-pressure pumps (0.1 mol% HG-II catalyst) 

 

While some synthesis robots are built into an air-free glovebox, our instrument 

converts between air and air-free conditions. When required for air-free techniques, 
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significant care must be taken to remove air and moisture from the robot, all the 

plumbing lines, as well as individual reactors. For the large volume of the box, N2 can be 

pumped in to displace air. Individual reactors can be heated under vacuum and purged 

with N2. The solvent lines in the high-pressure pump have a very small inner diameter 

(1/32”) and therefore require substantial volumes of anhydrous solvent to flush out “wet 

solvent” prior to introduction of the catalyst solution.  

As the instrument is incredibly complex, we experienced critical errors, some of 

which were difficult to resolve. Each PD reactor has over two dozen connections, each of 

which could leak gas, allow for solvent evaporation, and ruin the reproducibility of the 

experiment. These issues were easy to identify and easy to correct. However, as the gas 

delivery was controlled through solenoids, critical failures in the solenoid were 

spontaneous and unresolvable. We attempted to mitigate these issues by pressurizing with 

reactive gas and venting prior to introducing reagents to the system. 

 

Conclusion 

Although it allows for a variety of bespoke experiments with novel utilization, an 

instrument as complicated as the Swing-XL has some significant drawbacks. Potentially 

the hardest challenge to overcome is the large upfront cost. Continuous costs will occur 

from typical chemical consumables (solvents, vials, o-rings, septa, solenoids etc.) but also 

from instrument servicing. In the event of breaking or failure of a peripheral, specialized 

new parts need to be ordered, potentially requiring an in-house visit for installation of the 

new/replaced peripheral. This downtime can lead to valuable lost productivity on the 
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instrument. Finally, as the instrument is extensively complex, there is a steep learning 

curve to successful use of the instrument which can overwhelm new users. 

Even with these drawbacks, the potential for reaching new, unrealized goals is 

expanded using new technology. We successfully developed methods for studying the 

kinetics of several experiments simultaneously. This work is currently being expanded to 

other experiments, in hope that the analysis can eventually become fully automated, and 

potentially even expanded into a machine learning type environment. Many of the 

problems which occurred in these oxidation reactions can easily be resolved by using a 

different reaction system. Use of a new analytical technique to study the kinetics can also 

be used to study a vast landscape of chemical transformations. In the synthesis of 

heterogeneous catalysts, we quickly determined what the limitations of the system is. We 

have hypothesized new methods of resolving this through external stirring, or even 

preparing these materials on a larger scale in the PD reactors. The strategy of iterative 

addition of catalyst solutions has shown viability, especially with the lab-prepared CeO2 

for hydrogenolysis reactions. Finally, we utilized the specialized PD reactors for 

optimizing enyne metathesis reactions. A lot of work was required to get these reactors to 

work at their most optimal capabilities, but now intricate reactions can be performed in 

which reagents are fed in during reactions, and samples can be pumped out through the 

same methods. 
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Experimental 

General procedure for High-Throughput Kinetics (As written for ToMCoOAc)20 

A reaction flask was charged with cyclohexane (1.6 mL, 15 mmol, 2.45 M) and 

ToMCoOAc (1 μmol, 0.16 mM) dissolved in dichloromethane/acetonitrile (95 %, 1 mL). 

Upon the addition of 1,2-dichloroethane/acetonitrile (3.5 mL, 97.5 %) containing 

mCPBA (345 mg, 2.0 mmol) and nitrobenzene (30 μL, 300 μmol), the reaction was 

initiated and maintained at 25 °C. At each time point, an aliquot (0.2 mL) was removed 

and quenched with triphenylphosphine (10 mg, 38.1 μmol). The organic products were 

identified and quantified by GC–MS through the integration of the peak areas with 

respect to a known amount of the nitrobenzene standard. In this analysis, the quenched 

reaction product (10 μL) was added to dichloromethane (1.5 mL) and analyzed by GC–

MS. Each chromatogram was obtained under the following conditions: split, 25:1; inlet 

temperature, 250 °C; initial oven temperature, 45 °C; temperature ramp, 15 °C min–1 to 

150 °C. From this data, the concentration of cyclohexanol versus time was analyzed with 

a nonlinear least-squares regression. 

 

General Procedure for Heterogeneous Catalyst Synthesis (For a catalyst prepared in 13 

iterations) 

Solid catalyst support (0.5 g) was weighed out into a conical reaction vial equipped with 

a stir bar. Pd(OAc)2 in acetone was added dropwise over stirring catalyst (0.9 mL, 4.0 

mM). The vial array was moved into a reactor heated to 60 °C as the solvent was left to 
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evaporate for 90 minutes. The vial array was replaced over the stir plate, and the addition 

of solvent and evaporation were repeated a total of 13 times. 

The material was calcined in a box furnace at 300 °C for 2 h. (Ramp rate 20 to 300 °C, 2 

°C/min). It was then allowed to reduce in a tube furnace under flowing H2 at 300 °C for 2 

h. (Ramp rate 20 to 300 °C, 2 °C/min). The materials were then tested for metal loading 

via ICP-MS and metal dispersion via chemisorption. 
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 Supporting Information 

 

Figure S1. Chemspeed SWING-XL Automated Synthesis Platform. a PD Reactor array                  

b Gravimetric balance c XYZα arm d 4-needle head solvent dispensing system e Sampling 

station  f MTP reactor 



www.manaraa.com

63 
 

 

Figure S2. Close-up image of Chemspeed SWING-XL PD Reactor. a High pressure 

pump b High pressure feed line c Stirrer motor d High pressure gas line 
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Figure S3. Close-up image of Chemspeed SWING-XL MTP Block. a 4-needle head 

solvent dispensing system b MTP block vial racks  c MTP block reactor  d Gripper tool 
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CHAPTER 4. INVESTIGATION OF [XANTPHOSRH(COD)]BARF FOR 

CATALYTIC REDUCTION OF SECONDARY AND TERTIARY AMIDES BY 

PHENYLSILANE 

Modified from a paper to be submitted to a journal 

Zachary B. Weinstein, Dr. Aaron D. Sadow* 

 

Abstract 

 The cationic Rh(I) species [XantphosRh(cod)]BArF (1) (cod = 1,5-

cycloocatadiene; BArF = Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) was 

demonstrated to catalyze the reduction of a series of secondary and tertiary amides to 

amines using phenylsilane as a reductant. This system requires low catalyst loading (1 

mol %), requires mild reaction conditions (25 – 60 °C) and short reaction times with 

adequate functional group tolerance. Reactions of tertiary amides occur readily with 2 

equiv. of phenylsilane, while secondary amides require 10 equiv. of phenylsilane. 1 also 

demonstrated an affinity for catalytic disproportionation of phenylsilane which generated 

hydrogen gas in-situ. 

 

Introduction 

 Amines are one of the most important classes of compounds, being used 

extensively in the pharmaceutical industry as in the synthesis of more complex 

molecules.1 As direct synthesis of amines can be difficult, reduction of amides are a 
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common method for synthesizing amines.2,3,4 Amide reductions traditionally require 

stoichiometric equivalents of a hydride reagent such as lithium aluminum hydride 

(LiAlH4). The harsh conditions, air and water sensitivity, poor functional group tolerance 

and large quantities of salt byproducts such as lithium aluminum hydroxide make these 

reactions less favorable on an industrial scale. Regardless of the drawbacks, LiAlH4 

continues to be used industrially.5  

 Late metal catalyzed reductions of tertiary amides are well established, evidenced 

by RhH(CO)(PPh3) catalyzed reductions with Ph2SiH2 as a reductant.6 Cationic Ir species 

have shown selectivity for reducing tertiary amides,7 while secondary amides has been 

reported to be reduced with commercially available [IrCl(cod)]2 as a catalyst.8 These Ir 

catalysts were both appreciably more efficient as catalysts versus the earlier reported Rh 

species. Most reported systems typically catalyze the reduction secondary or tertiary 

amides. The platinum species H2PtCl6•6H2O
9 was reported to reduce both tertiary and 

secondary amides with polymethylhydrosiloxane, (PMHS) which can be a safer 

alternative to other hydrosilanes.10 The near limitless use of catalysts utilizing 

hydrosilanes reducing amides include but are not limited to iron,11  platinum,12 titanium13 

and boronic acids.14 

 Xantphos is a well-defined,15 commercially available ligand which has been used 

with Rh for a variety of catalytic reactions. Xantphos and [RhCl(cod)]2 has been used as a 

catalyst for borylation of nitriles.16 Xantphos and [Rh(CO)2(acac)] has been used as a 

hydroformylation catalyst,17 as well as a catalyst for methanol oxidation.18 Cationic 

[XantphosRh]+ complexes have also been used extensively in general catalysis19,20 and 

their reactivity with hydrosilanes has been well documented.21,22 Here we report the use 
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of [XantphosRh(cod)]BArF (1) for the catalytic reduction of tertiary and secondary 

amides, and document our study of the reactivity of 1 with hydrosilanes. 

 

Results and Discussion 

We began investigating group 9 metal rhodium and iridium complexes (Table 1) 

as these late metals are highly effective for hydrosilylation reactions as discussed above. 

[RhCl(cod)]2 catalyzes the reduction of dibenzylbenzamaide by phenylsilane to 

tribenzylamine in 57% yield, while the Ir analog [Ir(cod)Cl]2 catalyzes the same reaction 

in 19% yield. XantphosRh(cod)Cl23 acts as a marginally better catalyst (vs. [RhCl(cod)]2) 

increasing yields of tribenzylamine to 61%. The use of cationic [XantphosRh(cod)]+ 

species (via NaBArF or AgBF4) as a catalyst increases yield of tribenzylamine to 97 and 

94% yield respectively. Cationic Ir complexes also are more efficient than their neutral 

counterparts. 

 

Table 1. Catalyst screening of dibenzylbenzamide reduction 

Catalyst Yield (%)a 

[RhCl(cod)]2 57.1 

XantphosRh(cod)Cl 61.6 

XantphosRh(cod)BArF (1) 96.6 
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Table 1. (continued) 

XantphosRh(cod)BF4 93.9 

[IrCl(cod)]2 19.3 

XantphosIr(cod)BArF 43.5 

XantphosIr(cod)BF4 65b 

Conditions: N,N-dibenzylbenzamide (0.1 mmol), phenylsilane (0.21 mmol) and 

catalyst (0.001 mmol) in benzene-d6 at 60 °C for 15 min. a Yield calculated by 1H NMR. b 

Heated at 60 °C for 60 min. 

 

 Next, we began to investigate the influence of silane in the reduction of tertiary 

amides catalyzed by 1 (Table 2). Identity of silane played a very large role in yield of 

amine. Primary silanes such as phenylsilane gives higher yields of tribenzylamine (58%) 

tested reaction conditions versus secondary and tertiary silanes. Only starting material 

was observed in reactions in which simple tertiary silanes such as benzyldimethylsilane 

or triethylsilane were used. Reactions with polymeric tertiary silane polymethyl 

hydrosiloxane (PMHS) yields a trace amount of amine product. Reactions with 

tetramethyldisiloxane (TMDS) have relatively low yield of tribenzylamine (14%). 

Reactions using secondary silanes, benzyldimethylsilane and diphenylsilane, have 

moderate yields of tribenzylamine (33 and 8% respectively), while reactions using the 

primary silanes, phenylsilane and n-hexylsilane, have the highest yields of tribenzylamine 

(58 and 75% respectively) of all silanes tested. Although reactions with n-hexylsilane had 

higher yields than that of phenylsilane, we proceeded to use phenylsilane as the reductant 

due to issues that arise when using n-hexylsilane is employed as a reductant for 
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secondary amides (to be discussed later). The difference between the yield of 

tribenzylamine with phenylsilane between Table 1 and Table 2 can be attributed to the 

difference in concentration of reactants. 

 

 

Table 2. Silane screening of dibenzylbenzamide reduction 

Silane Yield (%)a 

PhSiH3 58 

Ph2SiH2 8 

TMDS 14 

Et3SiH 0 

PhCH3SiH2 33 

Bn(CH3)2SiH 0 

n-CH3(CH2)5SiH3 75 

PMHS trace 

Conditions: N,N-dibenzylbenzamide (0.05 mmol), silane (0.11 mmol) and 1 (0.005 

mmol) in benzene-d6 at 60 °C for 15 min. a Yield calculated by 1H NMR. 

 

Applying these optimized conditions using 1 as a catalyst with PhSiH3 was 

applied to a series of tertiary amides, producing their corresponding amines. For easier 
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workup, all scaled up reactions were isolated as an amine HCl salt, by adding ethereal 

HCl to the reaction mixture precipitating out the product. During our substrate screen 

(Table 3), we found several amides which reacted very fast at room temperature (Entries 

1-3) that consisted of a formamide, benzamide and acetamide. Most of the other amides 

tested reacted readily at 60 °C, with reasonable functional group tolerance. Bulkier 

substituents such as pivalamides and N-heterocyclic amides also reacted in good yield 

with the exception of dibenzylpivalamide (20% yield, Entry 6). Amides containing p-

chloro or p-fluorobenzamides also yielded their reduced amine counterparts in excellent 

yield (Entries 12-13), however they required much longer reaction times (18 h). Amides 

containing alkene moieties were also tested, (Entry 14, 15) but required purging nitrogen 

to remove hydrogen, for reasons which will be discussed later. Amides containing nitro-

substituents were tested as well, but the nitro- group was shown to be reduced to the 

primary amine counterpart. 
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Table 3. XantphosRh(cod)BarF Catalyzed Reduction of Tertiary Amides

 

a Run at room temperature b Run at 60 °C c Run at 60 °C under flowing N2 
d Reported 

yields are isolated yield of HCl amine salt 
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XantphosRh(cod)BArF was also shown to be able to catalyze reduction of 

secondary amides. However, under the same conditions as tertiary amide reduction, 

reactions of secondary amides form multiple products. The reaction of N-

phenylformamide and 2 equiv. PhSiH3 in the presence of catalytic XantphosRh(cod)BArF 

yields N-methylaniline, aniline, dimethylaniline and N-phenylmethanimine. Analogous 

results are observed when other secondary amides are tested. This disproportionation of 

the amine is unwanted, but can be resolved by using excess quantities of silane. 

Increasing phenylsilane from 2 to 10 equivalents inhibits side product formation and 

yields exclusively secondary amines. Likely this occurs by protecting the amide via 

dehydrocoupling of the N-H bond with hydrosilanes. Phenylsilane is the most effective 

silane tested for selective reduction of secondary amides. While n-hexylsilane appears to 

be slightly more active in some tertiary amides, side-products of primary and tertiary 

amines were observed even with 10 equivalents of silane.  

A brief investigation into the reduction of primary amides was also tested. 

Acetamide and benzamide were tested as substrates using similar conditions to the 

reduction of both secondary and tertiary amides, however the primary amide did not 

undergo conversion. Increasing the equivalents of silane, or increasing the reaction 

temperature up to 120 °C did not cause any conversion either. We concluded that this 

system would not be effective for primary amide reduction. 
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Table 4. XantphosRh(cod)BarF Catalyzed Reduction of Secondary Amides 

 

a Reported yields are isolated yield of HCl amine salt 

 

Over the course of these experiments, 1 was identified as being only slightly 

soluble in benzene, but fully dissolves after the addition of hydrosilanes. In C6D6, three 

doublets were observed by 31P NMR, (12.36, 21.06, 33.94 ppm; 144, 121, 120 Hz 

respectively) indicating multiple species in solution. After the addition of phenylsilane, 

the catalyst becomes fully soluble in benzene, but the identity of the active species could 

not be determined due to the broadening of the peaks in 31P over a very large range. 1 is 

much more soluble in more polar solvents such as methylene chloride, and in CD2Cl2, we 
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observe only two doublets by 31P NMR, (12.40, 21.10 ppm; 144, 139 Hz), while 

XantphosRh(cod)Cl only has one doublet at 8.47 ppm (138 Hz).  

In most of these reactions, a species was observed in GCMS and 1H NMR, with a 

molecular weight of 151 and a 1H NMR shift of 5.32 ppm, indicating the siloxane species 

which formed, 1,3-diphenyldisiloxane, which is a potential side product formed in this 

reaction. In the presence of excess (10 equiv.) silane, both the silane and siloxane are 

observed. 

Over the course of these reactions, PhSiH3 slowly disproportionates to Ph2SiH2 

and trace amounts of Ph3SiH (Table 5). Disproportionation or redistribution of primary or 

secondary hydrosilanes is not unprecedented. It has been reported to occur in the 

presence of Wilkinson’s catalyst.24,25 At the end of the catalysis, disproportionation 

occurs much more rapidly, generating hydrogen and secondary and tertiary hydrosilanes. 

It is this gradual generation of hydrogen which acts to reduce amido-olefins and amino-

olefins, requiring some reactions to be performed under flowing N2 to drive off the 

generated hydrogen gas. 

 

 

Table 5. Conversion of PhSiH3 and yield of Ph2SiH2 Catalyzed by 1 

Time (h) Conversion of PhSiH3 (%)a Yield of Ph2SiH2 (%)a 

0.2 25 10 

1 45 18 
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Table 5. (continued) 

24 80 35 

48 88.5 37.5 

96 93.5 40 

a Yield and conversion calculated by 1H NMR  

 

In an experiment to see if the order of addition of amide and silane has any impact 

on the reaction, there was no difference with the reaction when either amide or silane was 

added to the catalyst first. When the catalyst is added to N,N-dimethylbenzamide in 

stoichiometric quantity, the amide exhibits some changes in 1H NMR shifts. The methyl 

peaks on the amide nitrogen shift from 2.75 + 2.31 ppm in benzene-d6 to 2.56 + 2.17 

ppm. (Coupling constants change from 176 Hz to 156 Hz). The catalyst is not entirely 

soluble in benzene until the addition of the silane, but similar observations were made in 

deuterated bromobenzene. (2.82 + 2.55 ppm to 2.90 + 2.71 ppm, 108 Hz to 75 Hz). 

Other reductants were tested with amides and 1 in place of hydrosilanes. When 

HBPin was used in place of PhSiH3, no amines were identified in solution via 1H NMR in 

benzene-d6 or GC-MS after reactions in which the reaction was heated up to 120 °C. 

Hydrogen gas was also tested as a reductant, and under 1 atm H2, no amines were 

observed but the cyclooctadiene on the catalyst was hydrogenated to form cyclooctane as 

observed by 1H NMR. The catalyst is effective for alkene hydrogenation with hydrogen, 

as evidenced with hydrogenation of olefin containing amides. 
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To determine the origin of the protons which reduce the amide, an experiment 

with deuterated phenylmethylsilane and N,N-dimethylacetamide was performed (Eq. 1). 

The results indicate that the protons from the reduction come directly from the silane, as 

evidenced by the absence of the CH2 peak of N,N-dimethylacetamide in 1H NMR after 

the completion of the reduction. 

Investigation into the mechanism of the reaction led us to attempt to determine the 

active species present during catalysis. Addition of PhSiH3 or Ph2SiH2 to 1 in CD2Cl2 or 

C6D5Br led to rapid decomposition of the catalyst at room temperature. Other attempts 

were made toward synthesizing the neutral Rh silyl followed by addition of a halide 

abstracting agent by preparing the analog to a previously reported Xantphos Rh silyl 

compound.21 When NaBArF or AgBF4 was added to XantphosRh(Cl)(H)(SiHPh2) in 

either CD2Cl2 or C6D5Br, the product rapidly decomposed. We concluded that the active 

species was too reactive to isolate. 

 

Conclusions 

 In summary, we utilize XantphosRh(cod)BArF as an effective catalyst for 

reduction of both secondary and tertiary amides. There catalyst has modest functional 

group tolerance, and allows for the reductions to occur at mild temperatures in short 

times with good yield. Conditions must be modified for successful reactions depending 
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on substrate, due to reactivity of the catalyst and its efficacy as an olefin-hydrogenation 

catalyst. 

 Mechanistic study of the reaction confirms that the protons used to reduce the 

amide come from the silane, not from elsewhere, but the active species of catalyst is still 

unknown. Attempts to isolate potential active species were unsuccessful due to the 

reactivity of the catalyst. Finally, disproportionation of phenylsilane was investigated and 

it was determined that it is likely the source of hydrogen for olefin hydrogenations.  

 

Experimental 

Synthesis of XantphosRh(cod)BArF
 (1) Xantphos (0.100 g, 0.173 mmol), [RhCl(cod)]2 

(0.046 g, 0.086 mmol) and NaBArF (0.150 g, 0.173 mmol) was suspended in CH2Cl2 (15 

mL). It was allowed to stir at room temperature for 2 h. NaCl was removed by filtration 

and the solvent was removed under vacuum to afford 1 as an orange-red crystalline 

powder (0.278 g, 0.168 mmol, 97.3%) 

 1H (400.39 MHz, CD2Cl2, 298 K): δ 7.72 (m, 8H, BArF
4), 7.70 (s, 2H), 7.56 (s, 

4H, BArF
4), 7.27 (m, 6H, aryl), 7.14 (m, 16H, aryl), 7.03 (m, 2H, aryl), 4.42 (m, 4H, 

cod), 2.23 (m, 4H, cod), 2.01 (m, 4H, cod), 1.84 (s, 6H, CH3). 
31P {1H} NMR (162.08 

MHz, CD2Cl2, 298K): δ 8.43 (d, JRh-P 136 Hz) 

Anal. Calcd. for C79H56BF24OP2Rh: C, 57.40; H, 3.42 Found: C, 57.84; H, 3.24. 
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General procedure for amide reduction. 

Amide (0.1 mmol), phenylsilane (0.21 mmol) and XantphosRh(cod)BArF (0.001 mmol) 

was dissolved in benzene (5.0 mL) in a scintillation vial and either left at room 

temperature or heated to 60 °C while stirring for the time as described in Table 3. After 

the time elapsed, the solution was filtered through a celite plug to remove excess Rh. 

Ethereal HCl was added to precipitate out the amine salt, which was washed with ether 

and dried under vacuum.  
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Figure S7. 1H NMR Spectra. Table 3 - Entry 1 
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Figure S2. 1H NMR Spectra. Table 3 - Entry 2 
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Figure S3. 1H NMR Spectra. Table 3 - Entry 3 
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Figure S4. 1H NMR Spectra. Table 3 - Entry 4 
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Figure S5. 1H NMR Spectra. Table 3 - Entry 5 
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Figure S6. 1H NMR Spectra. Table 3 - Entry 6 
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Figure S8. 1H NMR Spectra. Table 3 - Entry 8 
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Figure S9. 1H NMR Spectra. Table 3 - Entry 9 
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Figure S10. 1H NMR Spectra. Table 3 - Entry 10 
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Figure S11. 1H NMR Spectra. Table 3 - Entry 11 



www.manaraa.com

91 
 

 

Figure S12. 1H NMR Spectra. Table 3 - Entry 12 
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Figure S13. 1H NMR Spectra. Table 3 - Entry 13 
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Figure S14. 1H NMR Spectra. Table 3 - Entry 14 
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Figure S15. 1H NMR Spectra. Table 3 - Entry 15 
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Figure S16. 1H NMR Spectra. Table 4 - Entry 16 
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Figure S17. 1H NMR Spectra. Table 4 - Entry 17 
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Figure S18. 1H NMR Spectra. Table 4 - Entry 18 
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Figure S19. 1H NMR Spectra. Table 4 - Entry 19 
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Figure S20. 1H NMR Spectra. Table 4 - Entry 20 
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CHAPTER 5. CONCLUSION 

 

 Studies were performed on a series of catalytic reactions using both conventional 

synthetic strategies and strategies based on the operation of our automated synthesis 

platform. New catalysts were identified for Henkel-type reactions, amide reductions and 

hydrogenolysis reactions. New methods were developed for studying the kinetics of 

catalytic oxidation reactions and enyne metathesis reactions. 

Synthesis of 2,5-FDCA was achieved in high yield from potassium furoate 

catalyzed by copper(I) iodide under high pressures of carbon dioxide. Yield and 

selectivity have increased from previously identified Zn- and Cd- based catalysts. Carbon 

dioxide plays a strong role in the catalytic cycle, although the overall mechanism is not 

known. Other dicarboxylates can be accessed from other potassium carboxylate 

precursors, but non-heteroaromatic carboxylates require higher temperatures than that of 

furoate. These reactions can possibly provide new opportunities for large scale synthesis 

of polymer precursors. 

The strengths and weaknesses of using an automated synthesis platform were 

realized as several uniquely different experiments were developed on the instrument. 

First, the reaction of the oxidation of cyclohexane was studied over time, acquiring 

information to study the kinetics of the reaction as catalyzed by Ni, Fe and Co 

complexes. Secondly, heterogeneous catalysts were synthesized in usable scale quantities 

by iterative addition of pre-catalyst solution. The synthesis was entirely automated, and 

the resulting products were used as catalysts for the hydrogenolysis of lignin model 
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compounds for the eventual goal bio-mass upgrading. Finally, the stainless steel high-

pressure reactors were used to optimize the synthesis of butadiene analogs. 

Finally, a series of secondary and tertiary amines were synthesized from their 

respective amides in a hydrosilane induced reduction catalyzed by 

XantphosRh(cod)BArF. The amines were mostly synthesized in high yield with modest 

functional group tolerance at mild temperatures in short times. The catalyst was found to 

disproportionate phenylsilane rapidly producing hydrogen gas as well as other aryl 

silanes.   
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